Реферат по дисциплине «Методы и средства защиты мис и сс от дестабилизирующих воздействий»


Способы влагозащиты элементов и узлов РЭС



Скачать 50.23 Kb.
страница3/7
Дата12.02.2020
Размер50.23 Kb.
Название файларэс.docx
Учебное заведениеНациональный исследовательский университет Высшая школа экономики
ТипРеферат
1   2   3   4   5   6   7

1.2. Способы влагозащиты элементов и узлов РЭС


Для обеспечения надежности функционирования РЭС при воздействии влаги требуется применять влагозащитные конструкции, которые разделяют на две группы: монолитные и полые. Монолитные оболочки составляют неразрывное целое с защищаемым узлом. Монолитные оболочки выполняются из органических материалов. Обычно компоненты с такой защитой предназначены для использования в негерметичных наземных РЭС, и в этом случае приходится принимать дополнительные меры для обеспечения влагозащиты электрических соединений (например, лакировать печатные платы).

Полые влагозащитные оболочки позволяют освободить защищаемые компоненты от механического контакта с оболочкой, что обеспечивает работу в более широком диапазоне температур и исключает химическое взаимодействие оболочки и защищаемого компонента. Полые оболочки, особенно из неорганических материалов, обеспечивают более высокую надежность влагозащиты, но имеют значительные габариты, массу, стоимость. Наиболее эффективно использование полых оболочек для групповой герметизации бескорпусных компонентов в составе блока.

Для защиты от влаги компонентов и узлов с помощью монолитных оболочек, являющихся одновременно несущей конструкцией для внешних выводов, используются пропитка, заливка, обволакивание и опрессовка.

Пропитка нашла наибольшее применение для защиты от влаги обмоток электродвигателей, катушек трансформаторов и т. д. При пропитке из полостей и пор вытесняется воздух, и они заполняются лаком или компаундом. Это приводит к увеличению электрической и механической прочности, улучшению теплопроводности, но одновременно увеличиваются масса, паразитная емкость.

Заливка — это сплошная упаковка компонента или узла в изоляционную массу путем заполнения ею свободного промежутка между изделием и стенками корпуса или между изделием и заливочной формой. Для улучшения теплопроводности в заливочный компаунд иногда добавляют кварцевую пудру или прокаленный порошок оксида алюминия, а для улучшения влагозащитных свойств можно добавлять порошок цеолита, поглощающий влагу. При выборе заливочного материала особое внимание следует обращать на близость ТКЛР материала заливки и защищаемого компонента или узла (это влияет на внутренние напряжения в компаунде), а также ТКЛР материала заливки и внешних выводов (это влияет на образование каналов проникновения влаги при изменении температуры).

Обволакивание - применяют для защиты от влаги печатных плат, дискретных ЭРЭ, бескорпусных полупроводниковых приборов, микросборок. Основным преимуществом обволакивания является высокая экономичность, недостатками – довольно толстый и неконтролируемый слой покрытия, возможность использования только для нежестких условий эксплуатации (как и для всех видов полимерной защиты от влаги), сложность удаления попавшей под защитный слой влаги. Обволакивание печатных плат лаками и компаундами позволяет повысить пробивное напряжение работающей в наземных условиях аппаратуры.

Опрессовка — это защита изделия от влаги толстым слоем полимерного материала (термореактивная или термопластическая пластмасса) методом литьевого или трансферного прессования в специальных формах. Этот вид влагозащиты используют в основном для малогабаритных компонентов (ИС, ЭРЭ, микросборок), что позволяет надежно укрепить внешние выводы и создать несущую конструкцию, которая способна выдерживать механические перегрузки и пригодна для автоматизации установки компонентов на плату. При выборе материала для опрессовки необходимо учитывать его параметры ε, tgδ, электрическую прочность.

Для защиты от коррозии несущих корпусных конструкционных узлов из металлов и сплавов широко применяют монолитные пленочные металлические покрытия, нанесенные горячим способом, гальванически, путем диффузии. Толщина таких покрытий единицы – десятки микрометров.

В ряде случаев защитное покрытие делают многослойным, например слой меди толщиной 6…10 мкм (высокая адгезия к стали), слой никеля толщиной 3…6 мкм (высокая твердость), слой хрома толщиной 0,5 мкм (антифрикционность, гидрофобность). Для защиты корпусов из алюминиевых сплавов используют многослойные покрытия, например Cu – Ni – (Sn – Bi).



Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7


База данных защищена авторским правом ©genew.ru 2020
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Лабораторная работа
Рабочая программа
Методические указания
Практическая работа
Методические рекомендации
Теоретические основы
Пояснительная записка
Общая характеристика
Учебное пособие
История развития
Общие сведения
Физическая культура
Теоретические аспекты
Практическое задание
Федеральное государственное
Техническое задание
Теоретическая часть
Направление подготовки
Самостоятельная работа
Дипломная работа
Общие положения
государственное бюджетное
Методическая разработка
Образовательная программа
квалификационная работа
Техническое обслуживание
Технологическая карта
Выпускная квалификационная
учебная программа
Решение задач
История возникновения
Методическое пособие
Краткая характеристика
Исследовательская работа
Рабочая учебная
Общие требования
Общая часть
Основная часть
История создания
Рабочая тетрадь
Метрология стандартизация
Техническая эксплуатация
Название дисциплины
Математическое моделирование
Организация работы
Современное состояние
Экономическая теория
Информационная безопасность
Государственное регулирование